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Abstract

Text attribute transfer is modifying certain lin-
guistic attributes (e.g. sentiment, style, author-
ship, etc.) of a sentence and transforming them
from one type to another. In this paper, we
aim to analyze and interpret what is changed
during the transfer process. We start from the
observation that in many existing models and
datasets, certain words within a sentence play
important roles in determining the sentence at-
tribute class. These words are referred to as
the Pivot Words. Based on these pivot words,
we propose a lexical analysis framework, the
Pivot Analysis, to quantitatively analyze the
effects of these words in text attribute classi-
fication and transfer. We apply this framework
to existing datasets and models, and show
that: (1) the pivot words are strong features
for the classification of sentence attributes; (2)
to change the attribute of a sentence, many
datasets only requires to change certain pivot
words; (3) consequently, many transfer mod-
els only perform the lexical-level modification,
while leaving higher-level sentence structures
unchanged. Our work provides an in-depth un-
derstanding of linguistic attribute transfer and
further identifies the future requirements and
challenges of this task1.

1 Introduction

The task of text attribute transfer (or text style
transfer 2) is to transform certain linguistic at-
tributes (sentiment, style, authorship, rhetorical
devices, etc.) from one type to another (Ficler and
Goldberg, 2017; Fu et al., 2018; Hu et al., 2017; Li
et al., 2018; Shen et al., 2017). The state-of-the-art

∗ Work done when Yao was an intern at Bytedance AI
Lab.

1Our code can be found at
https://github.com/FranxYao/pivot analysis

2Many existing works also call this task style transfer(Fu
et al., 2018), our work view style as one of the linguistic at-
tributes, and use the term style or attribute according to the
context.

Figure 1: Examples of pivot words in sentiment trans-
fer. Certain words are strongly correlated with the sen-
timent such that a transfer model only need to modify
these words to accomplish the transfer task while leav-
ing the higher level sentence structure unchanged.

(SOTA) models have achieved inspiring transfer
success rates (Zhao et al., 2018; Zhang et al., 2018;
Prabhumoye et al., 2018; Yang et al., 2018). How-
ever, it is still unclear in current literature about
what is transferred and what remains to be un-
changed during the transfer process. To answer
this question, we perform an in-depth investiga-
tion of the linguistic attribute transfer datasets and
models.

Our investigation starts from a simple observa-
tion: in many transfer datasets and models, certain
class-related words play very important roles in at-
tribute transfer (Li et al., 2018; Prabhumoye et al.,
2018). Figure 1 gives a sentiment transfer example
from the controllable generation (CG) model (Hu
et al., 2017) on the Yelp dataset. In this example,
rude is strongly related to the negative sentiment
and good is strongly related to the positive senti-
ment, thus simply substituting rude with good will
transfer the sentence from negative to positive. In
this work, We name these words the pivot words
for a class. We use the term the pivot effect to re-
fer the effect that certain strong words may be able
to determine the class of a sentence.

Based on the observation of the pivot effect, our
research questions are: (1) which words are pivot
words and how do they influence the attribute class
of a sentence in different datasets? (2) does the
model only need to modify the pivot words to per-



form the attribute transfer or it may change higher-
level sentence composationality like syntax?

To answer question (1), we propose the pivot
analysis, a series of simple yet effective text min-
ing algorithms, to quantitatively examine the pivot
effects in different datasets. The basics of the
datasets we investigate are listed in Table 1. We
first give the algorithm to extract pivot words
(Sec 3). We statistically show the stronger the
pivot effect is on a dataset, the easier for a model
to transfer its sentences. To further analyze the
fine-grained distributional structure of these pivot
words, we propose the precision-recall histogram
to show to what extent the datasets may be influ-
enced by their pivot words (Sec 4.2).

To answer question (2) and discover what is
changed during the transfer process, we use the
pivot words to analyze the transfer results of two
SOTA models: the Controllable Generation (CG)
model(Hu et al., 2017) and the Cross Alignment
(CA) model (Shen et al., 2017). We show that
although equipped with sophisticated modeling
techniques, in many datasets, these models tend to
change only a few words and most of these modi-
fied words are pivot words. When we mask out the
modified words (to eliminate the lexical changes)
and compare the Levenshtein string edit distance
(Levenshtein, 1966) of the sentence stems before
and after the transfer, we find out many of the
sentence stems are the same (the distance of the
masked sentences equals to 0). This means that in
transfer, the model only modifies few pivot words
while leaving the syntactical structure of the sen-
tence unchanged (Sec 5).

To sum up, we show that: (1) in many datasets,
words are important features in classification and
transfer. But still, certain hard cases require
a higher level of understanding of the sentence
structures. (2) SOTA models tend to perform the
transfer at the lexical level, the syntax of a sen-
tence is generally unchanged. The understanding
and modification of higher-level sentence compo-
sitionality (syntax trees and dependency graphs) is
still a challenging problem.

2 Background

Inspired by the image style transfer task (Gatys
et al., 2016; Zhu et al., 2017), the goal of text
attribute(style) transfer is to transfer the stylistic
attributes of the sentence from one class to an-
other while maintaining the content of the sen-

tence unchanged (Fu et al., 2018; Ficler and Gold-
berg, 2017; Hu et al., 2017). Because of the lack
of parallel datasets, most models focus on the un-
paired transfer. Although plenty of sophisticated
techniques are used in this task, such as adversar-
ial learning (Zhao et al., 2018; Chen et al., 2018),
latent representations (Li and Mandt, 2018; Dai
et al., 2019; Liu et al., 2019), and reinforcement
learning (Luo et al., 2019; Gong et al., 2019; Xu
et al., 2018), there is little discussion about what is
changed and what remains unchanged.

Because of the lack of transparency and in-
terpretability, there is some retrospection on this
topic. Such as the definition of text style
(Tikhonov and Yamshchikov, 2018), and the eval-
uation metrics (Li et al., 2018; Mir et al., 2019).
Our proposed pivot analysis aligns with these
works and provides a new tool to probe the transfer
datasets and models. The de facto metrics is to use
a pretrained classifier to classify if the transferred
sentence is in the target class. So our pivot analy-
sis starts from the classification task and mines the
words with strong predictive performance.

While many previous works focus on one-to-
one transfer, many recent works extend this task
to one-to-many transfer (Logeswaran et al., 2018;
Liao et al., 2018; Subramanian et al., 2019). For
simplicity, we focus on the one-to-one setting. But
it is also easy to extend the pivot analysis into one-
to-many transfer settings.

3 Pivot Words Discovery

To study the factors influencing attribute transfer,
we start from mining words strongly correlated
with the attribute class i.e. pivot words. Algorithm
1 shows the procedure of mining pivot words. This
algorithm is based on a simple intuition: if one
single word is strong enough to determine the sen-
tence attributes, then when we use the existence
of this word to classify the attribute, we should
achieve very high precision. Consider two ex-
treme examples: when a word only exists in one
class, it should achieve 100% classification preci-
sion. When a word exists evenly in two different
classes, its precision is 50%. The reason we use
precision instead of recall or accuracy is that only
precision reveals the influence of a single word:
suppose the word “awesome” only exists in 100
positive sentences, and the whole dataset size is
100K. In this case, “awesome” will have low recall
and accuracy, but high precision. This algorithm



Yelp Amazon Caption Paper Gender Politics Reddit Twitter
Source Hu et al.

(2017)
Li et al.
(2018)

Li et al.
(2018)

Fu et al.
(2018)

Prabhumoye
et al. (2018)

Prabhumoye
et al. (2018)

dos Santos
et al. (2018)

dos Santos
et al. (2018)

Class Positive Positive Romantic Academic Male Democratic Polite Polite
Negative Negative Humorous Journalism Female Republican Impolite Impolite

Size(train/
dev/test)

444K/
63K/126K

554K/
2K/1K

12K/
-/1K

392K/
20K/20K

2M/
4K/534K

537K/
4K/56K

10M/
19K/47K

3M/
18K/18K

Table 1: The text attribute transfer datasets we investigate.

Figure 2: The pivot words and sentence examples in three example datasets. The vocabulary of pivot words is
large so we only list typical words. Sentences without pivot words are intuitively harder to classify and transfer.

calculates the precision for each word-class pair,
and choose pivot words with a predefined thresh-
old p0.

For simplicity, we only consider binary classifi-
cation in Algorithm 1, but one could easily extend
it to multi-class settings. Also, we only consider
unigrams(words), while it is also straightforward
to extend it to ngrams. In practice, we find the un-
igram version performs quite good, as is shown in
Table 2. As for the parameters in the algorithm,
the precision threshold p0 controls the confidence
of a word to be a pivot, and the occurrence thresh-
old f0 prevents overfitting. We tune these parame-
ters based on the classification performance on the
validation set. Specifically, to get better classifi-
cation performance, f0 and p0 should be lower to
allow more vote (e.g. f0 ≤ 10, p0 ∈ [0.5, 0.7]). To
get more confidence and filter out stronger pivot

Algorithm 1 Pivot Words Discovery
Input: The vocabulary V , the sentences S and the labels Y ,
the frequency threshold f0, the precision threshold p0
Output: The pivot words Ωy for each class y ∈ {0, 1}. The
word-class precision matrix p(x, y)

1: procedure PIVOT WORDS DISCOVERY
2: Balance the dataset by down-sampling the majority

class.
3: for each sentence s, each class y, and each word x in

the vocabulary V with frequency higher than f0 do
4: Consider the class of s is y or 1− y
5: Use the existence of x to classify:
6: if x is in s then
7: Classify s to be y
8: else
9: Classify s to be 1− y

10: Calculate the classification precision p(x, y) of word
x for label y over all sentences S.

11: if p(x, y) > p0 then
12: x is a pivot word for class y i.e. x ∈ Ωy

13: return Ωy, p(x, y)



Algorithm 2 The Pivot Classifier
Input: sentence s, the pivot words Ωy for class y ∈ {0, 1}
Output: The class y(s)of sentence s

1: procedure PIVOT CLASSIFICATION
2: View s as bag of words
3: For each y ∈ {0, 1}, calculate sy = ||s ∩ Ωy||
4: Predict the class of s to be y(s) = argmaxy{sy}.

Break tie randomly.
5: return y(s)

words, f0 and p0 should be higher (e.g. f0 ≥
100, p0 ≥ 0.7).

Figure 2 shows the mined pivot words in dif-
ferent datasets. For sentences that contain pivot
words, it is clear that these words are strong fea-
tures for classification. Intuitively, to transfer the
class of these sentences, one could directly modify
these words. But there are also cases that contain
no pivot words, e.g. i will be back in the Yelp
dataset. To modify the sentiment of these sen-
tences, a model needs to understand a broader con-
text and common sense. In general, the existence
of pivot words gives us a method to understand in
attribute transfer, what cases are easier and what
cases are more difficult.

The intuition that the existence of single words
is enough to determine the linguistic attribute does
not necessarily hold on all datasets. But empir-
ically, we find out many transfer datasets tend
to contain strong pivot words (Figure 5). One
could compare our pivot analysis with other meth-
ods that mine the word importance, such as the
weights of a logistic classifier, or more sophis-
ticated Bayesian methods like the log-odds ratio
informative Dirichlet prior (Monroe et al., 2008).
Our method is more straightforward and inter-
pretable. We further develop this method as a sim-
ple yet strong classification baseline to indicate the
transfer difficulty of different datasets and use the
pivot words as a tool to analyze, interpret, and vi-
sualize the text attribute transfer models.

4 Analysing Datasets with Pivot Analysis

In this section, we use the pivot words to analyze
the transfer datasets. We first reveal the mecha-
nisms of how pivot words affect classification and
transfer by using the pivot words as the classifica-
tion boundary. Then we use the precision-recall
histogram to demonstrate the distributional struc-
ture of the pivot words in different portions of the
datasets.

Figure 3: Pivot classification accuracy v.s. transfer
success rate (correlation = 0.64, p-value = 0.003). The
stronger the pivot effect is, the easier to transfer.

Figure 4: The mechanism of the pivot effect on classi-
fication and transfer.

4.1 The Pivot Classifier

Algorithm 2 gives a simple method to classify a
sentence based on the pivot words output from Al-
gorithm 1. This is essentially a voting based clas-
sifier. This classifier holds strong independence
assumption that the label of a sentence is only re-
lated to the bag of words, but ignore the word or-
ders. This is to say, the decision boundary only
stays at the lexical level, and does not go to the
syntax level. Then it counts the pivot words of
different classes contained by the sentence and
predicts the label to be one of the largest pivot
words overlap. Intuitively, this algorithm classifies
a sentence only based on the existence of strong
attribute-related words.

The pivot classifier is a simple yet strong clas-
sification baseline, as is shown in Table 2. We use
it to study different datasets and compare it with
(1) a logistic classifier, (2) a SOTA CNN classifier
(Kim, 2014). We have balanced the test sets so the
random baseline is 50%. This voting based clas-
sifier achieves comparable performance with the
two models in 4 datasets (Amazon, Gender, Pa-
per, Politics), and only loses small margins in 2
datasets (Yelp, Caption). Although the indepen-
dence assumption from our pivot classifier does
not necessarily hold for all datasets, empirically
it performs very well. This means that these pivot
words are a meaningful approximation of the true
decision boundary.

If the decision boundary of a linguistic attribute
stays at the lexical level, then one could cross the



Validation Yelp Amazon Caption Gender Paper Politics Reddit Twitter
Pivot 88.00 75.85 - 72.02 97.82 98.32 90.00 85.25
Logistic 91.83 76.75 - 72.77 98.39 99.82 98.05 98.20
CNN 92.87 77.93 - 74.20 98.36 98.85 99.45 99.55
Test Yelp Amazon Caption Gender Paper Politics Reddit Twitter
Pivot 88.35 73.30 69.20 71.91 98.07 94.60 91.15 85.05
Logistic 91.97 73.80 75.20 72.91 98.67 96.83 98.05 98.05
CNN 92.96 75.80 76.10 74.29 98.66 87.91 99.65 99.45

Table 2: Classification accuracy. The voting based pivot classifier is a strong classification baseline compared with
the state of art CNN classifier, indicating that in many datasets, words are strong features for class labels.

Figure 5: The precision-recall histogram. The high right bars in Yelp, Paper, Politics, Reddit, and Twitter datasets
reveal the existence of strong pivot words, Each bar at location (x, y) should be interpreted as: if use pivot words
with precision x to classify the sentence, the recall will be y. The higher the right bars are, the more sentences can
be classified by words accurately, the stronger the pivot effect is, the easier to transfer. The baseline cases where
the dataset is full of/ has no pivot words are show on the left.

boundary by simply substituting the pivot words
of one class to another, thus achieving text class
transfer. Intuitively, the more pivot words a dataset
contains, the stronger the pivot effect is, the easier
for the pivot classifier to classify, and the easier
to transfer the attribute. This intuition is demon-
strated in Figure 3. The pivot effect (shown by
pivot classification accuracy) and the transfer dif-
ficulty (shown by the transfer success rate reported
from previous models) has a strong positive corre-
lation and is statistically significant. This mecha-
nism is demonstrated in Figure 4. The stronger the
pivot effect is, the easier to transfer.

4.2 The Precision-Recall Histogram

Now we go one step further to reveal how the
pivot effect distributes in different portions of the
datasets. We propose a new tool, the precision-
recall histogram based on the results from Algo-
rithm 1 and 2. As is shown in Algorithm 3, essen-
tially, this algorithm use pivot words with differ-

ent level of confidence (precision) to classify the
dataset, and output the recall. For better visualiza-
tion, we set the precision interval gap to be 0.1, but
it is also possible to use smaller or larger gaps. It is
also important to balance the dataset in Algorithm
1 to make the baseline precision 0.5.

The histogram for all datasets gives a fine-
grained illustration of the pivot effect (Figure 5).
We first look at the two baseline cases: a dataset
with no pivot words, and a dataset full of pivots.
If a dataset is full of pivots, i.e. the vocabulary
of the two classes have no overlap, then all words
should have precision 1.0 and they should achieve
1.0 recall, so the right-most bars are the highest. If
a dataset has no pivot words, i.e. all words are dis-
tributed evenly in two classes, then all words have
precision 0.5 and they should achieve 1.0 recall, so
the left-most bars are the highest. The higher the
right bars are, the stronger the pivot effect is.

The histograms of the datasets are somewhere
between the two baseline cases. Generally, we



Algorithm 3 The Precision-Recall Histogram
Input: The sentences S, the labels Y , the pivot words for
each class Ωy, y ∈ Y , the precision matrix p(x, y), x ∈
V, y ∈ Y
Output: The precision-recall histogram
1: procedure THE PRECISION-RECALL HISTOGRAM
2: for The precision range pair (pi, pi+1) ∈

[(0.5, 0.6), (0.6, 0.7)...(0.9, 1.0)] do
3: For each class y, gather all pivot words of the pre-

cision in the given range: Ω
(i)
y = x : p(x, y) ∈ [pi, pi+1]

4: Use Ω
(i)
y to form a pivot classifier and classify the

dataset S. Calculate the recall ri.
5: Store (pi, ri)
6: return The list of (pi, ri)

see two different shape distributions. In the Yelp,
Paper, Politics, Reddit, and Twitter datasets, the
right-most bars are the highest, meaning that in
these datasets, strong pivot words exist in a large
portion of the dataset. These are close to the all-
pivot baseline. Specially, we see that in the Reddit
and Twitter dataset, the pivot effect only exists in
the impolite class, while in other datasets, the pivot
effect exists in both classes. Note that this phe-
nomenon cannot be discovered simply from the
overall classification accuracy. After manual in-
spection, we find out since the attribute of these
two datasets is politeness, the pivot words for the
impolite class are the common swearwords in En-
glish. These words dominate the impolite sen-
tences.

In the Caption, Gender, and Amazon dataset,
we see a decreasing height from left to right, indi-
cating a weaker pivot effect. Highest bars exist in
the 0.5 precision bars, meaning that for each class,
most of them can be classified by 0.5 precision (=
random guessing). This is close to the no-pivot
baseline. The high-precision words still exist, but
they cannot dominate the whole class. In conclu-
sion, the precision-recall histograms give a struc-
tural examination for each class. The existence of
pivots and the determination power of pivots differ
from class to class, and from datasets to datasets.

5 Analysing Transfer Models with Pivot
Analysis

In this section, we aim to analyze what is changed
and what remains in linguistic attribute transfer
systems. We perform our experiments from two
perspectives: the lexical structures, and the syntac-
tical structures. For the lexical structures, we show
what words are modified by the transfer model.
For the syntactical structures, we mask out the

Yelp Amazon Gender
CG - # modified 1.66 0.56 0.79

- percentage 18% 4% 5%
CA - # modified 1.61 3.54 5.60

- percentage 18% 23% 33%
sentence length 8.89 14.82 17.01

Table 3: Average number of modified words and their
percentage in the sentence length. The transfer models
tend to modify only a few attribute-related words.

Yelp Amazon Gender
CG 91.25 94.77 94.17
CA 72.33 74.04 56.09

Table 4: Percentage of modified words that are pivot
words. A large portion of the modified words are piv-
ots.

modified pivot words and compare the resulting
sentence stems.

We use the two most common SOTA mod-
els, the Controllable Generation (CG) model from
Hu et al. (2017), and the Cross Aligned Autoen-
coder (CA) model from Shen et al. (2017). The
CG model uses a conditional VAE with style-
discriminator and trained with a wake-sleep al-
gorithm. The CA model uses a cross-alignment
mechanism to guide the transfer process. These
are two strong models in many datasets compared
to many other models. We direct the readers to the
original papers for more details.

We test the models on three datasets: Yelp,
Amazon, and Gender. The Yelp dataset is the most
widely used benchmark in the text style transfer
task. As is shown in the previous sections, it ex-
ists strong pivot effects. There are many senti-
ment words in this dataset. For the Amazon and
the Gender dataset, there is less pivot effect. So
our experiments give a minimum cover of different
types of datasets. We use the released implemen-
tation for our experiments 3. All hyper-parameters
are followed by their official instructions. Both
models are trained until the simultaneous conver-
gence of the reconstruction loss and the adversar-
ial loss. We refer the readers to the implementation
repositories for more details.

3The CG model: https://github.com/asyml/
texar/tree/master/examples/text_style_
transfer

the CA model: https://github.com/
shentianxiao/language-style-transfer

https://github.com/asyml/texar/tree/master/examples/text_style_transfer
https://github.com/asyml/texar/tree/master/examples/text_style_transfer
https://github.com/asyml/texar/tree/master/examples/text_style_transfer
https://github.com/shentianxiao/language-style-transfer
https://github.com/shentianxiao/language-style-transfer


CG 0 1 2 3 4 5 6 >6
Yelp 74.65 5.05 10.68 5.71 1.84 0.72 0.66 0.69
Amazon 94.20 0.00 0.90 4.00 0.80 0.10 0.00 0.00
Gender 90.96 0.04 6.60 0.45 0.89 0.43 0.16 0.48
CA 0 1 2 3 4 5 6 >6
Yelp 41.30 1.98 13.63 10.01 8.76 7.49 6.17 10.66
Amazon 37.60 1.85 9.95 9.25 6.15 6.15 4.65 24.40
Gender 37.89 0.27 2.27 3.36 1.60 1.40 2.03 51.18

Table 5: Masked edit distance percentage distributions. For the CG model, in most of the cases(> 74%), the
masked edit distance is 0, meaning that only few words are changed while the sentence structures are exactly the
same. For the CA model, still a large portion of the sentence structures are unchanged (> 37%)

Figure 6: The transfer cases. Many of the transfered words are pivot words. The model tend to transfer only a few
words while leaving the higher level sentence structure unchanged.

Figure 7: An example of the masked sentences. Edit
distance = 0 after masking.

Yelp Amazon Gender
CG - distance 0.65 0.17 0.26

- percentage 7.3% 1.4% 1.5%
CA - distance 2.63 4.56 9.95

- percentage 29% 31% 58%
sentence length 8.89 14.82 17.01

Table 6: Edit distance after masking out the pivot
words. In the CG model, only words are modified,
while the higher-level sentence structures remain to be
the same. For the CA model, it tries to modify more
sentence structures.

5.1 Lexical Structures

We show that the two models tend to modify only
a few words in a given sentence, and a large por-
tion of these words are pivot words. The results
are shown in Table 3 and 4. On the Yelp dataset,
the CG model and the CA model only modify 1.66
and 1.61 words on average. The portion of pivot

words is 91% and 72% respectively. This means
on this dataset, both two models focus on word
substitutions to change the sentence style. On the
Amazon and the Gender dataset, the models take
different transfer strategies. For the CG model, it
concentrates on fewer words to modify (0.56 on
Amazon and 0.79 on Gender). For the CA model,
it tends to modify more words (3.54 on Amazon
and 5.60 on Gender). Still, both models tend to
modify the pivot words for class transfer. In gen-
eral, a small portion of the sentences are modi-
fied (< 30% approximately), and a large portion
of the modified words are pivots (> 60% approxi-
mately).

5.2 Syntactic Structures

If we eliminate the lexical differences by mask-
ing out the modified words, what is changed in
the resulting sentence stems? We use the Lev-
enshtein string edit distance (Levenshtein, 1966)
to measure the distances of the masked sentences
as an approximation to the distances of syntactic
structures. Figure 7 gives an example of masked
sentences. One could also consider more sophis-
ticated metrics to measure the syntactic distances



with parsing trees (Shen et al., 2018; Zhang and
Shasha, 1989). Here we use the string edit distance
for simplicity. In practice, it is informative enough
to demonstrate the change of sentence structures.

Table 6 shows the edit distances after mask-
ing the pivot words. We see clear differences be-
tween the two models. For the CG model, it barely
changes the sentence structures (0.1+ distances).
This indicates that it takes the strategy to focus
more on the substitution of pivot words. For the
CA model, it takes the strategy that not only to
modify the words, but also a portion of the sen-
tence structures. We see a moderate percentage
of the sentence structure modified on the Yelp and
Amazon dataset (about 30%), and a large syntactic
modification (58%) on the Gender dataset. Com-
pared with the CG model, the CA model tries to
modify the sentences more radically.

To show a fine-grained distribution of the dis-
tances among different cases, we list the distribu-
tion statistics in Table 5. We see that for the CG
model, most of the cases > 74%) sentence stems
are unchanged. For the CA model, although its
average edit distance is larger, in a large portion of
the cases (> 37%), the distance is still 0. In con-
clusion, both models tend to retain the sentence
structures in a large portion of the datasets.

5.3 Qualitative Analysis

Now we examine the transfer cases qualitatively
in Figure 6. These are cases from the CG model
on the three datasets. The pivot words are high-
lighted. When the model tries to change the class
of a sentence, it first identifies the pivot words,
then substitutes them with the pivots from another
class. If we mask out the highlighted pivot words,
the resulting sentence stems are the same, indicat-
ing that the syntactic structures remain unchanged.
Although this is not all the case, the models tend to
focus on words in a large portion of the datasets.

6 Discussion

Implications: Our pivot classifier reveals that to
a certain extent, in many transfer datasets, the de-
cision boundary stays at the lexical level. Con-
sequently, to cross the boundary and transfer the
text class, many instances in the dataset only re-
quires to modify certain pivot words. But still,
there are cases with no pivot words. The decision
boundary in such cases is higher than the word
level. To transfer these cases, the model needs a

deeper understanding of the sentence structures,
which may include syntax, semantics, and com-
mon sense (Figure 2).

Considerations: In our experiments, we find
out the two models are both quite unstable dur-
ing training. The balance between the reconstruc-
tion loss and the adversarial loss will significantly
influence the convergence point. Our pivot anal-
ysis framework requires the model to converge to
a meaningful local optimum with reasonable con-
tent preservation and transfer strength at the same
time(Fu et al., 2018). For our pivot algorithms,
it is important to balance the datasets (both train-
ing and testing) for a reasonable precision base-
line(0.5). Our algorithm is mostly sensitive to the
precision threshold p0 i.e. the confidence of how
pivot a word is. We tune this parameter based on
the development set performance.

Limitations: All of our pivot algorithms stays
at the lexical level. These algorithms hold strong
Independence assumption that the class of a sen-
tence is independent of the order of words. So
this method may not be able to capture certain lin-
guistical phenomenons, such as anastrophe 4. One
could also consider an extreme example where the
pivot analysis does not work: suppose we have a
corpus of sentences, we label all of them to be 0,
then we reverse all sentences, and label the re-
versed sentences to be 1. In this dataset, both
classes share the same vocabulary, and the pre-
cision of any word will be 0.5. This is an ex-
ample where only the order determines the class.
Further, in our work, we only consider lexical
changes, and do not consider other issues with
regard to more rigorous definition of linguistic
style(Tikhonov and Yamshchikov, 2018), the eval-
uation metrics (Mir et al., 2019), and the causality
in text classification(Wood-Doughty et al., 2018).
These topics will be the future directions.

7 Conclusion

In this work, we present the Pivot Analysis, a lex-
ical analysis framework for the examination and
inspection of text style transfer datasets and mod-
els. This analysis framework consists of three
text mining algorithms, pivot words discovery,
the pivot classifier, and the precision-recall his-
tograms. With these algorithms, we reveal what
are the important words that influence the class

4To change the order of certain words



of a sentence, how these words are distributed in
a dataset, the mechanisms through which these
words interact with a transfer model, and how the
models perform the transfer. Our method serves as
a probe for the transparency and the interpretabil-
ity of the datasets and the transfer models. We
show that a large portion of the transfer cases stays
at the lexical level, while the syntactic structures
are unchanged.

Since our methods stay at the lexical level, it has
its own limitations in understanding higher-level
sentence compositionality. These limitations are
also shared by the SOTA transfer models: to un-
derstand the syntax and semantics (i.e. the struc-
tures of the sentence), and the common sense (i.e.
the background and implications of the surface
words). These limitations are also directions for
future challenges. In the future, we need to use
better inductive bias and use more powerful mod-
els towards higher-level sentence compositional-
ity.

Acknowledgments

We thank the reviewers for their informative re-
views. We thank Yansong Feng, Bingfeng Luo,
and Zhenxin Fu for the helpful discussions. This
work is supported by the China Scholarship Coun-
cil.

References
Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao

Zhang, Zhe Gan, Dinghan Shen, Yizhe Zhang,
Guoyin Wang, Ruiyi Zhang, and Lawrence Carin.
2018. Adversarial text generation via feature-
mover’s distance. In NeurIPS.

Ning Dai, Jianze Liang, Xipeng Qiu, and Xuanjing
Huang. 2019. Style transformer: Unpaired text style
transfer without disentangled latent representation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5997–6007, Florence, Italy. Association for Compu-
tational Linguistics.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language genera-
tion. In Proceedings of the Workshop on Stylis-
tic Variation, pages 94–104, Copenhagen, Denmark.
Association for Computational Linguistics.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan
Zhao, and Rui Yan. 2018. Style transfer in text: Ex-
ploration and evaluation. In AAAI.

Leon A. Gatys, Alexander S. Ecker, and Matthias
Bethge. 2016. Image style transfer using convolu-

tional neural networks. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 2414–2423.

Hongyu Gong, Suma Bhat, Lingfei Wu, Jinjun Xiong,
and Wen mei W. Hwu. 2019. Reinforcement learn-
ing based text style transfer without parallel training
corpus. In NAACL-HLT.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the 34th
International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 1587–1596, International Convention
Centre, Sydney, Australia. PMLR.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Vladimir I Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. So-
viet physics doklady, 10(8):707–710.

Juncen Li, Robin Jia, Hua He, and Percy S. Liang.
2018. Delete, retrieve, generate: A simple approach
to sentiment and style transfer. In NAACL-HLT.

Yingzhen Li and Stephan Mandt. 2018. Disentangled
sequential autoencoder. In ICML.

Yi Liao, Lidong Bing, Piji Li, Shuming Shi, Wai Lam,
and Tong Zhang. 2018. Quase: Sequence editing
under quantifiable guidance. In EMNLP.

Dayiheng Liu, Jie Fu, Yidan Zhang, Chris Pal, and
Jiancheng Lv. 2019. Revision in continuous space:
Fine-grained control of text style transfer. ArXiv,
abs/1905.12304.

Lajanugen Logeswaran, Honglak Lee, and Samy Ben-
gio. 2018. Content preserving text generation with
attribute controls. In Advances in Neural Informa-
tion Processing Systems, pages 5103–5113.

Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao
Chang, Zhifang Sui, and Xu Rui Sun. 2019. A dual
reinforcement learning framework for unsupervised
text style transfer. In IJCAI.

Remi Mir, Bjarke Felbo, Nick Obradovich, and Iyad
Rahwan. 2019. Evaluating style transfer for text. In
NAACL-HLT.

Burt L. Monroe, Michael Colaresi, and Kevin M.
Quinn. 2008. Fightin’ words: Lexical feature se-
lection and evaluation for identifying the content of
political conflict. Political Analysis, 16(4):372–403.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan R.
Salakhutdinov, and Alan W. Black. 2018. Style
transfer through back-translation. In ACL.

Cı́cero Nogueira dos Santos, Igor Melnyk, and Inkit
Padhi. 2018. Fighting offensive language on social
media with unsupervised text style transfer. In ACL.

https://doi.org/10.18653/v1/P19-1601
https://doi.org/10.18653/v1/P19-1601
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
http://proceedings.mlr.press/v70/hu17e.html
http://proceedings.mlr.press/v70/hu17e.html


Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S.
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In NIPS.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018. Straight to the tree: Constituency parsing with
neural syntactic distance. In ACL.

Sandeep Subramanian, Guillaume Lample,
Eric Michael Smith, Ludovic Denoyer,
Marc’Aurelio Ranzato, and Y-Lan Boureau.
2019. Multiple-attribute text style transfer. In
ICLR.

Alexey Tikhonov and Ivan P. Yamshchikov. 2018.
What is wrong with style transfer for texts? ArXiv,
abs/1808.04365.

Zach Wood-Doughty, Ilya Shpitser, and Mark Dredze.
2018. Challenges of using text classifiers for causal
inference. arXiv preprint arXiv:1810.00956.

Jingjing Xu, Xu Sun, Qi Zeng, Xuancheng Ren, Xi-
aodong Zhang, Houfeng Wang, and Wenjie Li. 2018.
Unpaired sentiment-to-sentiment translation: A cy-
cled reinforcement learning approach. In ACL.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P. Xing, and
Taylor Berg-Kirkpatrick. 2018. Unsupervised text
style transfer using language models as discrimina-
tors. In NeurIPS.

Kaizhong Zhang and Dennis Shasha. 1989. Simple
fast algorithms for the editing distance between trees
and related problems. SIAM journal on computing,
18(6):1245–1262.

Ye Zhang, Nan Ding, and Radu Soricut. 2018. Shaped:
Shared-private encoder-decoder for text style adap-
tation. In NAACL-HLT.

Junbo Jake Zhao, Yoon Kim, Kelly Zhang, Alexan-
der M. Rush, and Yann LeCun. 2018. Adversarially
regularized autoencoders. In ICML.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and
Alexei A. Efros. 2017. Unpaired image-to-image
translation using cycle-consistent adversarial net-
works. 2017 IEEE International Conference on
Computer Vision (ICCV), pages 2242–2251.


