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Abstract

Neural natural language generation (NNLG)
systems are known for their pathological out-
puts, i.e. generating text which is unrelated to
the input specification. In this paper, we show
the impact of semantic noise on state-of-the-
art NNLG models which implement different
semantic control mechanisms. We find that
cleaned data can improve semantic correctness
by up to 97%, while maintaining fluency. We
also find that the most common error is omit-
ting information, rather than hallucination.

1 Introduction

Neural Natural Language Generation (NNLG) is
promising for generating text from Meaning Repre-
sentations (MRs) in an ‘end-to-end’ fashion, i.e.
without needing alignments (Wen et al., 2015,
2016; Dušek and Jurčı́ček, 2016; Mei et al., 2016).
However, NNLG requires large volumes of in-
domain data, which is typically crowdsourced (e.g.
Mairesse et al., 2010; Novikova et al., 2016; Wen
et al., 2015, 2016; Howcroft et al., 2017), intro-
ducing noise. For example, up to 40% of the E2E
Generation Challenge1 data contains omitted or
additional information (Dušek et al., 2019).

In this paper, we examine the impact of this type
of semantic noise on two state-of-the-art NNLG
models with different semantic control mecha-
nisms: TGen (Dušek and Jurčı́ček, 2016) and SC-
LSTM (Wen et al., 2015). In particular, we investi-
gate the systems’ ability to produce fact-accurate
text, i.e. without omitting or hallucinating informa-
tion, in the presence of semantic noise.2 We find
that:

∗Denotes equal contribution.
1http://www.macs.hw.ac.uk/

InteractionLab/E2E/
2Also see https://ehudreiter.com/2018/11/

12/hallucination-in-neural-nlg/

• training on cleaned data reduces slot-error rate
up to 97% on the original evaluation data;
• testing on cleaned data is challenging, even for

models trained on cleaned data, likely due to
increased MR diversity in the cleaned dataset;
and
• TGen performs better than SC-LSTM, even

when cleaner training data is available. We hy-
pothesise that this is due to differences in how
the two systems handle semantic input and the
degree of delexicalization that they expect.
In addition, we release our code and a cleaned

version of the E2E data with this paper.3

2 Mismatched Semantics in E2E Data

The E2E dataset contains input MRs and corre-
sponding target human-authored textual references
in the restaurant domain. MRs here are sets of
attribute-value pairs (see Figure 1). Most MRs
in the dataset have multiple references (8.1 on av-
erage). These were collected using crowdsourc-
ing, leading to noise when crowd workers did
not verbalise all attributes or added information
not present in the MR. According to Dušek et al.
(2019), the multiple references should help NLG
systems abstract from the noise. However, most
NLG systems in the E2E challenge in fact produced
noisy outputs, suggesting that they were unable to
learn to ignore noise in the training input.

Problems with the semantic accuracy in training
data is not unique to the E2E dataset. Howcroft
et al. (2017) collected a corpus of paraphrases dif-
fering with respect to information density for use
in training NLG systems and found that subjects’
paraphrases dropped about 5% of the slot-value
pairs from the original texts and changed the val-

3Data cleaning scripts, the resulting cleaned data and
links to code are available at https://github.com/
tuetschek/e2e-cleaning.

http://www.macs.hw.ac.uk/InteractionLab/E2E/
http://www.macs.hw.ac.uk/InteractionLab/E2E/
https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/
https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/
https://github.com/tuetschek/e2e-cleaning
https://github.com/tuetschek/e2e-cleaning


Original MR: name[Cotto], eatType[coffee shop], food[English],
priceRange[less than £20], customer rating[low], area[riverside], near[The
Portland Arms]

Human reference 1 (accurate): At the riverside near The Portland Arms,
Cotto is a coffee shop that serves English food at less than £20 and has low
customer rating.

HR 2: Located near The Portland Arms in riverside, the Cotto coffee shop
serves English food with a price range of £20 and a low customer rating.
Corrected MR: name[Cotto], eatType[coffee shop], food[English],
customer rating[low], area[riverside], near[The Portland Arms]
(removed price range)

HR 3: Cotto is a coffee shop that serves English food in the city centre. They
are located near the Portland Arms and are low rated.
Corrected MR: name[Cotto], eatType[coffee shop], food[English],
customer rating[low], area[city centre], near[The Portland Arms]
(removed price range, changed area)

HR 4: Cotto is a cheap coffee shop with one-star located near The Portland
Arms.
Corrected MR: name[Cotto], eatType[coffee shop], priceRange[less than
£20], customer rating[low], near[The Portland Arms]
(removed area)

Figure 1: MR and references from the E2E corpus. The
first reference is accurate and verbalises all attributes,
but the remaining ones contain inaccuracies. Corrected
MRs were automatically produced by our slot match-
ing script (see Section 3). Note that HR 2 is not fixed
properly since the script’s patterns are not perfect.

Dataset Part MRs Refs SER(%)

Original
TRAIN 4,862 42,061 17.69
DEV 547 4,672 11.42
TEST 630 4,693 11.49

Cleaned
TRAIN 8,362 33,525 (0.00)
DEV 1,132 4,299 (0.00)
TEST 1,358 4,693 (0.00)

Table 1: Data statistics comparison for the original E2E
data and our cleaned version (number of distinct MRs,
total number of textual references, SER as measured by
our slot matching script, see Section 3).

ues for approximately 10% of the slot-value pairs.
As a result of these changes and the insertion of
new facts, only 61% of the corpus contained all
and only the intended propositions. This is similar
to what Eric et al. (2019) found in their work on
the MultiWOZ 2.0 dataset: correcting the dialogue
state annotations resulted in changes to about 40%
of the dialogue turns in their dataset. These findings
suggest that efforts to create more accurate training
data—whether through stricter crowdsourcing pro-
tocols, conducting follow-up annotations (cf. Eric
et al., 2019), or automated cleanup heuristics like
we report here—are likely necessary in the NLG
and dialogue systems communities.

3 Cleaning the Meaning Representations

To produce a cleaned version of the E2E data, we
used the original human textual references, but

paired them with correctly matching MRs.4 To this
end, we reimplemented the slot matching script
of Reed et al. (2018), which tags MR slots and
values using regular expressions. We tuned our ex-
pressions based on the first 500 instances from the
E2E development set and ran the script on the full
dataset, producing corrected MRs for all human
references (see Figure 1). The differences against
the original MRs allow us to compute the seman-
tic/slot error rate (SER; Wen et al., 2015; Reed
et al., 2018; Dušek et al., 2019):

SER =
#added +#missing +#wrong value

#slots

To guarantee the integrity of the test set, we re-
moved instances from the TRAIN (training) and
DEV (development) sets that overlapped the TEST

set. This resulted in 20% reduction for TRAIN and
ca. 8% reduction for DEV in terms of references
(see Table 1). On the other hand, the number of
distinct MRs rose sharply after reannotation; the
MRs also have more variance in the number of
attributes. This means that the cleaned dataset is
more complex overall, with fewer references per
MR and more diverse MRs.

We manually evaluated 200 randomly chosen
instances from the cleaned TRAIN set to check the
accuracy of the slot matching script. We found that
the slot matching script itself has a SER of 4.2%,
with 39 instances (19.5%) not 100% correctly rated.
This is much lower than the E2E dataset authors’
own manual assessment of ca. 40% noisy instances
(Dušek et al., 2019) and the script’s rating of the
whole dataset (mean SER: 16.37%),and compa-
rable to the slot matching script of Juraska et al.
(2018) evaluated on the same data.5

4 Evaluating the Impact on Neural NLG

We chose two recent neural end-to-end NLG sys-
tems, which represent two different approaches to
semantic control and have been widely used and
extended by the research community.

4Note that this can be done automatically, unlike fixing the
references to match the original MRs.

5Juraska et al. (2018)’s script reaches 6.2% SER and 60
instances with errors, most of which is just omitting the eat-
Type[restaurant] value. If we ignore this value, it gets 1.9%
SER and 20 incorrect instances. We did not use this script
as it was not available to us until very shortly before the
camera-ready deadline. The script is now accessible under
https://github.com/jjuraska/slug2slug. We
plan to further improve our slot matching script based on er-
rors found during the manual evaluation and comparison to
Juraska et al. (2018).

https://github.com/jjuraska/slug2slug


4.1 TGen

TGen (Dušek and Jurčı́ček, 2016) is the baseline
system used in the E2E challenge.6 TGen is in
essence a vanilla sequence-to-sequence (seq2seq)
model with attention (Bahdanau et al., 2015) using
LSTM cells where input MRs are encoded as se-
quences of triples in the form (dialogue act, slot,
value).7 TGen adds to the standard seq2seq setup
a reranker that selects the output with the lowest
SER from the decoder output beam (n-best list).
SER is estimated based on a classifier trained to
identify the MR corresponding to a given text. We
use the default TGen parameters for the E2E data,
experimenting with three variants:
• TGen without reranker: a vanilla seq2seq

model with attention (TGen−);
• TGen with default reranker: the same aug-

mented with an LSTM encoder and binary clas-
sifier for individual slot-value pairs;
• TGen with oracle reranker: directly uses the

slot matching script to compute SER (TGen+).
We fixed the parameters of the main seq2seq gen-
erator to see the direct influence of each reranker,
without the added effect of random initialization.

4.2 SC-LSTM

In contrast to seq2seq architecture used by TGen,
the Semantically Controlled LSTM (SC-LSTM,
Wen et al., 2015) uses a learned gating mechanism
to selectively express parts of the MR during gen-
eration. We use the SC-LSTM model provided
as part of the RNNLG repository8 with minor
changes to improve comparability to TGen. Most
importantly, we incorporate the tokenization and
normalization used by TGen into RNNLG. Since
the word embeddings provided with RNNLG only
cover about half of the tokens in the E2E dataset,
we use randomly initialised word embeddings (di-
mension 50; same as TGen).

5 Evaluation and Results

To measure the effect of noisy data, we compare
systems trained on the original data against sys-
tems trained using cleaned TRAIN and validation
(=DEV) sets; we perform the comparisons both on
the original and the cleaned TEST sets. Note that

6https://github.com/UFAL-DSG/tgen
7The dialogue act is constant/ignored for the E2E dataset

since it’s not part of the MRs there.
8https://github.com/shawnwun/RNNLG

only scores on the same test set are directly com-
parable as the cleaned TEST set has more diverse
MRs and fewer references per MR (i.e. numbers in
Tables 2 and 3 cannot be compared across tables;
cf. Section 3).

5.1 Automatic Metrics

We use freely available word-overlap-based eval-
uation metrics (WOM) scripts that come with the
E2E data (Dušek et al., 2019),9 supporting BLEU
(Papineni et al., 2002), NIST (Doddington, 2002),
ROUGE-L (Lin, 2004), METEOR (Lavie and Agar-
wal, 2007) and CIDEr (Vedantam et al., 2015).
In addition, we use our slot matching script for
SER (cf. Section 3). We also show detailed results
for the percentages of added and missed slots and
wrong slot values.10

The results in Table 2 (top half) for the original
setup confirm that the ranking mechanism for TGen
is effective for both WOMs and SER, whereas the
SC-LSTM seems to have trouble scaling to the E2E
dataset. We hypothesise that this is mainly due to
the amount of delexicalisation required. However,
the main improvement of SER comes from train-
ing on cleaned data with up to 97% error reduc-
tion with the ranker and 94% without.11 In other
words, just cleaning the training data has a much
more dramatic effect than just using a semantic
control mechanism, such as the reranker (0.97% vs.
4.27% SER). WOMs are slightly lower for TGen
trained on the cleaned data, except for NIST, which
gives more importance to matching less frequent n-
grams. This suggests better preservation of content
at the expense of slightly lower fluency.

The results for testing on cleaned data (Table 3,
top half) confirm the positive impact of cleaned
training data and also show that the cleaned test
data is more challenging (cf. Section 3), as reflected
in the lower WOMs. This raises the question
whether the improved results from clean training
data are due to seeing more challenging examples
at training time. However, the improved results
for training and testing on clean data (i.e. seeing
equally challenging examples at training and test
time), suggest the increase in performance can be
attributed to data accuracy rather than diversity.

Looking at the detailed results for the number of

9https://github.com/tuetschek/
e2e-metrics

10Absolute numbers of errors and number of completely
correct instances are shown in Table 5 in the Supplementary.

11 0.12
4.27

= 0.028 and 0.97
15.94

= 0.061

https://github.com/UFAL-DSG/tgen
https://github.com/shawnwun/RNNLG
https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics


TRAIN TEST System BLEU NIST METEOR ROUGE-L CIDEr Add Miss Wrong SER

Original

O
ri

gi
n

al

TGen− 63.37 7.7188 41.99 68.53 1.9355 00.06 15.77 00.11 15.94
TGen 66.41 8.5565 45.07 69.17 2.2253 00.14 04.11 00.03 04.27
TGen+ 67.06 8.5871 45.83 69.73 2.2681 00.04 01.75 00.01 01.80
SC-LSTM 39.11 5.6704 36.83 50.02 0.6045 02.79 18.90 09.79 31.51

Cleaned

TGen− 65.87 8.6400 44.20 67.51 2.1710 00.20 00.56 00.21 00.97
TGen 66.24 8.6889 44.66 67.85 2.2181 00.10 00.02 00.00 00.12
TGen+ 65.97 8.6630 44.45 67.59 2.1855 00.02 00.00 00.00 00.03
SC-LSTM 38.52 5.7125 37.45 48.50 0.4343 03.85 17.39 08.12 29.37

Cleaned
missing

TGen− 66.28 8.5202 43.96 67.83 2.1375 00.14 02.26 00.22 02.61
TGen 67.00 8.6889 44.97 68.19 2.2228 00.06 00.44 00.03 00.53
TGen+ 66.74 8.6649 44.84 67.95 2.2018 00.00 00.21 00.03 00.24

Cleaned
added

TGen− 64.40 7.9692 42.81 68.87 2.0563 00.01 13.08 00.00 13.09
TGen 66.23 8.5578 45.12 68.87 2.2548 00.04 03.04 00.00 03.09
TGen+ 65.96 8.5238 45.49 68.79 2.2456 00.00 01.44 00.00 01.45

Table 2: Results evaluated on the original test set (averaged over 5 runs with different random initialisation). See
Section 5.1 for explanation of metrics. All numbers except NIST and ROUGE-L are percentages. Note that the
numbers are not comparable to Table 3 as the test set is different.

TRAIN TEST System BLEU NIST METEOR ROUGE-L CIDEr Add Miss Wrong SER

Original

C
le

an
ed

TGen− 36.85 5.3782 35.14 55.01 1.6016 00.34 09.81 00.15 10.31
TGen 39.23 6.0217 36.97 55.52 1.7623 00.40 03.59 00.07 04.05
TGen+ 40.25 6.1448 37.50 56.19 1.8181 00.21 01.99 00.05 02.24
SC-LSTM 23.88 3.9310 32.11 39.90 0.5036 07.73 17.76 09.52 35.03

Cleaned

TGen− 40.19 6.0543 37.38 55.88 1.8104 00.17 01.31 00.25 01.72
TGen 40.73 6.1711 37.76 56.09 1.8518 00.07 00.72 00.08 00.87
TGen+ 40.51 6.1226 37.61 55.98 1.8286 00.02 00.63 00.06 00.70
SC-LSTM 23.66 3.9511 32.93 39.29 0.3855 07.89 15.60 08.44 31.94

Cleaned
missing

TGen− 40.48 6.0269 37.26 56.19 1.7999 00.43 02.84 00.26 03.52
TGen 41.57 6.2830 37.99 56.36 1.8849 00.37 01.40 00.09 01.86
TGen+ 41.56 6.2700 37.94 56.38 1.8827 00.21 01.04 00.07 01.31

Cleaned
added

TGen− 35.99 5.0734 34.74 54.79 1.5259 00.02 11.58 00.02 11.62
TGen 40.07 6.1243 37.45 55.81 1.8026 00.05 03.23 00.01 03.29
TGen+ 40.80 6.2197 37.86 56.13 1.8422 00.01 01.87 00.01 01.88

Table 3: Results evaluated on the cleaned test set (cf. Table 2 for column details; note that the numbers are not
comparable to Table 2 as the test set is different).

Training data Add Miss Wrong Disfl
Original 0 22 0 14
Cleaned added 0 23 0 14
Cleaned missing 0 1 0 2
Cleaned 0 0 0 5

Table 4: Results of manual error analysis of TGen on a
sample of 100 instances from the original test set: total
absolute numbers of errors we found (added, missed,
wrong values, slight disfluencies).

added, missing, and wrong-valued slots (Add, Miss,
Wrong), we observe more deletions than insertions,
i.e. the models more often fail to realise part of the
MR, rather than hallucinating additional informa-
tion. To investigate whether this effect stems from
the training data, we partially cleaned the data of
missing or added information only.12 However, the
results in bottom halves of Tables 2 and 3 do not

12We only performed these experiments on TGen because
of the low performance of SC-LSTM in general.

support our hypothesis: we observe the main effect
on SER from cleaning the missed slots, reducing
both insertions and deletions. Again, one possi-
ble explanation is that cleaning the missing slots
provided more complex training examples.

5.2 Manual Error Analysis

We carried out a detailed manual error analysis of
selected systems to confirm the automatic metrics
results, performing a blind annotation of semantic
and fluency errors (not a human preference rat-
ing). We evaluated a sample of 100 outputs on
the original test set produced by TGen with the
default reranker trained using all four cleaning set-
tings (original data, cleaned missing slots, cleaned
added slots, fully cleaned). The results in Table
4 confirm the findings of the automatic metrics:
systems trained on the fully cleaned set or the set
with cleaned missing slots have near-perfect per-



formance, with the fully-cleaned one showing a
few more slight disfluencies than the other. The
systems trained on the original data or with cleaned
added slots clearly perform worse in terms of both
semantic accuracy and fluency. All fluency prob-
lems we found were very slight and no added or
wrong-valued slots were found, so missed slots are
the main problem.

The manual error analysis also served to assess
the accuracy of the SER measuring script on system
outputs. Since NNLG tends to use more frequent
phrasing, we expected better performance than on
the dataset itself, and this proved true: we only
found 2 errors in the 400 system outputs (i.e. 99.5%
of instances and 99.93% of slots were matched
correctly). This confirms that the automatic SER
numbers reflect the semantic accuracy of individual
systems very closely.

6 Discussion and Related Work

We present a detailed study of semantic errors
in NNLG outputs and how these relate to noise
in training data. We found that even imperfectly
cleaned input data significantly improves semantic
accuracy for seq2seq-based generators (up to 97%
relative error reduction with the reranker), while
only causing a slight decrease in fluency.

Contemporaneous with our work is the effort
of Nie et al. (2019), who focus on automatic data
cleaning using a NLU iteratively bootstrapped from
the noisy data. Their analysis similarly finds that
omissions are more common than hallucinations.
Correcting for missing slots, i.e. forcing the gener-
ator to verbalise all slots during training, leads to
the biggest performance improvement. This phe-
nomenon is also observed by Dušek et al. (2018,
2019) for systems in the E2E NLG challenge, but
stands in contrast to work on related tasks, which
mostly reports on hallucinations (i.e. adding infor-
mation not grounded in the input), as observed for
image captioning (Rohrbach et al., 2018), sports
report generation (Wiseman et al., 2017), machine
translation (Koehn and Knowles, 2017; Lee et al.,
2019), and question answering (Feng et al., 2018).
These previous works suggest that the most likely
case of hallucinations is an over-reliance on lan-
guage priors, i.e. memorising ‘which words go to-
gether’. Similar priors could equally exist in the
E2E data for omitting a slot; this might be con-
nected with the fact that the E2E test set MRs tend
to be longer than training MRs (6.91 slots on av-

erage for test MRs vs. 5.52 for training MRs) and
that a large part of them is ‘saturated’, i.e. contains
all possible 8 attributes.

Furthermore, in accordance with our observa-
tions, related work also reports a relation between
hallucinations and data diversity: Rohrbach et al.
(2018) observe an increase for “novel compositions
of objects at test time”, i.e. non-overlapping test
and training sets (cf. Section 3); whereas Lee et al.
(2019) reports data augmentation as one of the most
efficient counter measures. In future work, we plan
to experimentally manipulate these factors to disen-
tangle the relative contributions of data cleanliness
and diversity.
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